
venv-update Documentation
Release 3.1.1

Buck Evan

Oct 19, 2018

Contents

1 venv-update in detail 3
1.1 Customizing the install command . 3

2 pip-faster in detail 5
2.1 Installation . 5

3 Introduction 7

4 Why? 9

5 venv-update 11

6 pip-faster 13
6.1 How much faster? . 13

7 Installation 15

8 Usage 17
8.1 . . . in your Makefile . 18
8.2 . . . with tox . 18

Python Module Index 21

i

ii

venv-update Documentation, Release 3.1.1

Issues | Github | CI | PyPI

Release v3.1.1 (Installation)

Contents 1

https://github.com/yelp/pip-faster/issues
https://github.com/yelp/pip-faster
https://travis-ci.org/Yelp/venv-update
https://pypi.python.org/pypi/pip-faster/

venv-update Documentation, Release 3.1.1

2 Contents

CHAPTER 1

venv-update in detail

venv-update is a small script whose job is to idempotently ensure the existence and correctness of a project’s virtualenv,
and synchronize it with its requirements.

We like to call venv-update from our Makefiles to create and maintain a virtualenv. It does the following:

• Ensures a virtualenv exists at the specified location with the specified Python version, and that it is valid. It will
create or recreate a virtualenv as necessary to ensure that one venv-update invocation is all that’s needed.

• Calculates the difference in packages derived from the requirements.txt files and the installed packages.
Packages will be uninstalled, upgraded, or installed as necessary.

The goal is that venv-update will put you in the same state as if you wipe away your virtualenv and rebuild it
with pip install, but much more quickly.

• Takes advantage of pip-faster for package installation (see below) to avoid network access and rebuilding
packages as much as possible.

For reference, a project with 250 dependencies which are all pinned can run a no-op venv-update in ~2 seconds with
no network access. The running time when changes are needed is dominated by the time it takes to download and
install packages, but is generally quite fast (on the order of ~10 seconds).

1.1 Customizing the install command

If you don’t like pip-faster, for whatever reason, venv-update provides sufficient control to use “plain-old” pip, or
any other command for that matter.

To tell venv-update to install and run pip rather than pip-faster:

venv-update install-command= pip install --upgrade bootstrap-deps= 'pip>8'

3

venv-update Documentation, Release 3.1.1

4 Chapter 1. venv-update in detail

CHAPTER 2

pip-faster in detail

By design pip-faster maintains the interface of pip, and should only have a few desirable behavior differences,
listed below.

1. pip-faster adds optional “prune” capability to the pip install subcommand. pip-faster
install --prune will uninstall any installed packages that are not required (as arguments to the same
install command). This is used by default in venv-update to implement reproducible builds.

2. We’ve taken great care to reduce the number of round-trips to PyPI, which makes up the majority of time spent
on what should be a no-op update. For example, if you’re installing a specific version of a package which we
already have cached, there’s no need to talk to PyPI, but vanilla pip will.

3. Packages are downloaded and wheeled before installation (if they aren’t available from PyPI as wheels). If the
virtualenv needs to be rebuilt, or you use the same requirement in another project, the wheel can be reused. This
greatly speeds up installation of projects like lxml or numpy which have a slow-to-compile binary component.

Mainline pip recently added this feature (in pip 7.0, 2015-05-21). We plan to merge, but this isn’t currently an
urgent work item; all of our use cases are satisfied. However, patches are welcome.

4. pip-faster will refuse to install package versions which conflict (we generally consider this a feature);
stock pip, on the other hand, will happily install conflicting packages. Similarly, pip-faster detects circular
dependencies and unsatisfied dependencies and throws an error where stock pip would not.

2.1 Installation

You can pip install venv-update to get pip-faster, the same way you would any other Python tool, but
if you’re using venv-update it’s not necessary to install pip-faster; the venv-update script will install the correct version
inside your virtualenv for you.

2.1.1 Internal PyPI Servers

Under linux, performance will be much better if you use an internal PyPI server instead of the public PyPI.

5

https://wheel.readthedocs.org/en/latest/
https://pypi.python.org/pypi

venv-update Documentation, Release 3.1.1

Besides the potentially lesser latency, an internal PyPI server allows for uploading binary wheels compiled for Linux.
Unlike OS X or Windows, installing projects like lxml on Linux is normally extremely slow since they will need to be
compiled during every installation.

pip-faster improves this by only compiling on the first installation for each user (this is also the default behavior for
pip >= 7), but this doesn’t help for the first run.

Using an internal PyPI server which allows uploading of Linux wheels can improve speed greatly. Unfortunately,
these wheels are guaranteed compatible only with the same Linux distribution they were compiled on, so this only
works if your developers work in very homogeneous environments.

For both venv-update and pip-faster, you can specify an index server by setting the $PIP_INDEX_URL environment
variable (or $PIP_EXTRA_INDEX_URL if you want to supplement but not replace the default PyPI). For pip-faster
you can also use -i or -e, just like in regular pip.

2.1.2 Benchmarks

You can find the set of scripts used to derive these numbers at: https://github.com/Yelp/venv-update/tree/master/
benchmark

benchmark: installing plone and its dependencies (260 packages)
last run: 2016-02-24

pip 8.0.2:
cold:

4m37.612s
4m39.762s
4m39.717s

noop:
0m6.890s
0m7.112s
0m7.436s

warm:
0m44.684s
0m44.614s
0m43.272s

pip-faster:
cold:

4m16.163s
4m21.282s
4m14.038s

noop:
0m2.399s
0m2.389s
0m2.335s

warm:
0m30.410s
0m21.303s
0m21.323s

6 Chapter 2. pip-faster in detail

https://github.com/Yelp/venv-update/tree/master/benchmark
https://github.com/Yelp/venv-update/tree/master/benchmark

CHAPTER 3

Introduction

venv-update is an MIT-Licensed tool to quickly and exactly synchronize a large python project’s virtualenv with its
requirements.

This project ships as two separable components: pip-faster and venv-update.

Both are designed for use on large projects with hundreds of requirements and are used daily by Yelp engineers.

7

https://github.com/Yelp/pip-faster/blob/latest/COPYING
https://pip.pypa.io/en/stable/user_guide/#requirements-files
https://www.yelp.com/

venv-update Documentation, Release 3.1.1

8 Chapter 3. Introduction

CHAPTER 4

Why?

Generating a repeatable build of a virtualenv has many edge cases. If a requirement is removed, it should be uninstalled
when the virtualenv is updated. If the version of python has changed, the only reliable solution is to re-build the
virtualenv from scratch. Initially, this was exactly how we implemented updates of our virtualenv, but it slowed things
down terribly. venv-update handles all of these edge cases and more, without completely starting from scratch (in
the usual case).

In a large application, best practice is to “pin” versions, with requirements like package-x==1.2.3 in order to
ensure that dev, staging, test, and production will all use the same code. Currently pip will always reach out to PyPI
to list the versions of package-x regardless of whether the package is already installed, or whether its wheel can be
found in the local cache. pip-faster adds these optimizations and others.

9

https://wheel.readthedocs.org/en/latest/

venv-update Documentation, Release 3.1.1

10 Chapter 4. Why?

CHAPTER 5

venv-update

A small script designed to keep a virtualenv in sync with a changing list of requirements. The contract of
venv-update is this:

The virtualenv state will be exactly the same as if you deleted and rebuilt it from scratch, but will get there
in much less time.

The needs of venv-update are what drove the development of pip-faster. For more, see venv-update in detail.

11

venv-update Documentation, Release 3.1.1

12 Chapter 5. venv-update

CHAPTER 6

pip-faster

pip-faster is a drop-in replacement for pip. pip-faster’s contract is:

Take the same arguments and give the same results as pip, just more quickly.

This is especially true in the case of pinned requirements (e.g. package-x==1.2.3). If you’re also using venv-
update (which we heartily recommend!), you can view pip-faster as an implementation detail. For more, see pip-faster
in detail.

6.1 How much faster?

If we install plone (a large python application with more than 250 dependencies) we get these numbers:

testcase pip v8.0.2 pip-faster improvement
cold 4m 39s 4m 16s 8%
noop 7.11s 2.40s 196%
warm 44.6s 21.3s 109%

In the “cold” case, all caches are completely empty. In the “noop” case nothing needs to be done in order to update
the virtualenv. In the “warm” case caches are fully populated, but the virtualenv has been completely deleted.

The Benchmarks page has more detail.

13

https://en.wikipedia.org/wiki/Plone_(software)

venv-update Documentation, Release 3.1.1

14 Chapter 6. pip-faster

CHAPTER 7

Installation

Because venv-update is meant to be the entry-point for creating your virtualenv directory and installing your
packages, it’s not meant to be installed via pip; that would require a virtualenv to already exist!

Instead, the script is designed to be vendored (directly checked in) to your project. It has no dependencies other than
virtualenv and the standard Python library.

curl -o venv-update https://raw.githubusercontent.com/Yelp/venv-update/v3.1.1/
venv_update.py
chmod +x venv-update

15

https://virtualenv.readthedocs.org/en/latest/
https://virtualenv.readthedocs.org/en/latest/
https://raw.githubusercontent.com/Yelp/venv-update/v3.1.1/venv_update.py
https://raw.githubusercontent.com/Yelp/venv-update/v3.1.1/venv_update.py

venv-update Documentation, Release 3.1.1

16 Chapter 7. Installation

CHAPTER 8

Usage

By default, running venv-update will create a virtualenv named venv in the current directory, using
requirements.txt in the current directory. This should be the desired default for most projects.

If you need more control, you can pass additional options to both virtualenv and pip. The command-line help
gives more detail:

$ venv-update --help
usage: venv-update [-hV] [options]

Update a (possibly non-existent) virtualenv directory using a pip requirements
file. When this script completes, the virtualenv directory should contain the
same packages as if it were deleted then rebuilt.

venv-update uses "trailing equal" options (e.g. venv=) to delimit groups of
(conventional, dashed) options to pass to wrapped commands (virtualenv and pip).

Options:
venv= parameters are passed to virtualenv

default: venv
install= options to pip-command

default: -r requirements.txt
pip-command= is run after the virtualenv directory is bootstrapped

default: pip-faster install --upgrade --prune
bootstrap-deps= dependencies to install before pip-command= is run

default: venv-update==3.1.1

Examples:
install requirements.txt to "venv"
venv-update

install requirements.txt to "myenv"
venv-update venv= myenv

install requirements.txt to "myenv" using Python 3.4

(continues on next page)

17

venv-update Documentation, Release 3.1.1

(continued from previous page)

venv-update venv= -ppython3.4 myenv

install myreqs.txt to "venv"
venv-update install= -r myreqs.txt

install requirements.txt to "venv", verbosely
venv-update venv= venv -vvv install= -r requirements.txt -vvv

install requirements.txt to "venv", without pip-faster --update --prune
venv-update pip-command= pip install

We strongly recommend that you keep the default value of pip-command= in order
to quickly and reproducibly install your requirements. You can override the
packages installed during bootstrapping, prior to pip-command=, by setting
bootstrap-deps=

Pip options are also controllable via environment variables.
See https://pip.readthedocs.org/en/stable/user_guide/#environment-variables
For example:

PIP_INDEX_URL=https://pypi.example.com/simple venv-update

Please send issues to: https://github.com/yelp/venv-update

8.1 . . . in your Makefile

venv-update is a good fit for use with make because it is idempotent and should never fail, under normal circumstances.
Here’s an example Makefile:

venv: requirements.txt
./bin/venv-update

.PHONY: run-some-script
run-some-script: venv

./venv/bin/some-script

8.2 . . . with tox

tox is a useful tool for testing libraries against multiple versions of the Python interpreter. You can speed it up by
telling it to use venv-update for dependency installation; not only will it avoid network access and prefer wheels, but
it’s also better at syncing a virtualenv (whereas tox will often throw out an entire virtualenv and start over).

To start using venv-update inside tox, copy the venv-update script into your project (for example, at bin/
venv-update).

Then, apply a change like this to your tox.ini file:

[tox]
envlist = py27,py34

+ skipsdist = true

[testenv]
+ venv_update =

(continues on next page)

18 Chapter 8. Usage

https://tox.readthedocs.org/en/latest/

venv-update Documentation, Release 3.1.1

(continued from previous page)

+ {toxinidir}/bin/venv-update \
+ venv= {envdir} \
+ install= -r {toxinidir}/requirements.txt {toxinidir}
- deps = -rrequirements.txt

commands =
+ {[testenv]venv_update}

py.test tests/
pre-commit run --all-files

The exact changes will of course vary, but above is a general template. The two changes are: running venv-update
as the first test command, and removing the list of deps (so that tox will never invalidate your virtualenv itself; we
want to let venv-update manage that instead). The skipsdist avoids installing your package twice. In tox<2, it also
prevents all of your packages dependencies from being installed by pip-slower.

8.2. . . . with tox 19

venv-update Documentation, Release 3.1.1

20 Chapter 8. Usage

Python Module Index

v
venv_update, 17

21

venv-update Documentation, Release 3.1.1

22 Python Module Index

Index

V
venv_update (module), 17

23

	venv-update in detail
	Customizing the install command

	pip-faster in detail
	Installation

	Introduction
	Why?
	venv-update
	pip-faster
	How much faster?

	Installation
	Usage
	… in your Makefile
	… with tox

	Python Module Index

